
Kickstart: New HMI
Framework

How to use the new HMI Framework architecture

Version 0.5

November 2017

Kickstart: New HMI Framework

Abstract

This document presents the new HMI Framework1, and explain the basics steps
to migrate an existing AGL app to use this new architecture.

Table of contents

1. Presentation..3
1.1. Global architecture..3
1.2. HMI components general principle...4

2. How-to adapts HVAC to use new HMI Framework....................................5
2.1. Clean old HMI usage code..5
2.2. Make WindowManager handle your app..5
2.3. Make your app use WindowManager..6
2.4. Add package config...8
2.5. Launch application using new Homescreen.......................................8
2.6. Get application displays in homescreen..9

3. SoundManager...10
3.1. Add package config...10
3.2. Make your application use SoundManager.......................................10
3.3. Communicate with soundmanager...11

Document revisions

Date Version Designation Author

31 Oct. 2017 0.1 Initial release R. Forlot

02 Nov. 2017 0.2 Change Legals Copyright R. Forlot

07 Nov. 2017 0.3 Change details about GUI libraries R. Forlot

13 Nov. 2017 0.4 GUI libraries now moved in their repo R. Forlot

14 Nov. 2017 0.5 Added soundmanager instructions K. Mitsunari

Legals

This work is licensed under the Creative Commons Attribution 3.0 Unported License.
To view a copy of this license, visit http://creativecommons.org/licenses/by/3.0/.

1 https://wiki.automotivelinux.org/_media/eg-ui-graphics/170802_agl_hmi-
fw_arch_0_2_4.pdf

Version 0.5 November 2017 – 2 / 13 –

https://creativecommons.org/licenses/by/3.0/

Kickstart: New HMI Framework

1. Presentation

1.1. Global architecture

Here are some short explanation of the new HMI Framework Architecture and better
than a long speech:

HMI Service will be composed with AGL Service, 3 at time of writing :

• AGL Service WindowManager2

• AGL Service HomeScreen3

2 https://gerrit.automotivelinux.org/gerrit/#/admin/projects/apps/agl-service-
windowmanager-2017

3 https://gerrit.automotivelinux.org/gerrit/#/admin/projects/apps/agl-service-homescreen-

Version 0.5 November 2017 – 3 / 13 –

HMI Framework Architecture

Kickstart: New HMI Framework

• AGL Service SoundManager4

HMI Manager layer is a set a corresponding library used to call API implemented by
HMI Service, in addition of others functions that an OEM or Vendor would want to
implement.

GUI library is the GUI tool kit itself such like Qt, HTML5 and so on but apps can access
to the HMI Manager directly using websocket. You could find these helper libraries in
their own repositories in gerrit567.

1.2. HMI components general principle

HMI is composed of 3 components : Homescreen, WindowManager and
SoundManager. Each one use the same principle of event handler which you could
associate to a callbacks.

Callbacks mainly will launch actions to get something done (register an app, surface
to draw, play a music stream, make invisible a surface, …).

WindowManager understand about now, these events:

• Event_Active

• Event_Inactive

• Event_Visible

• Event_Invisible

• Event_SyncDraw

• Event_FlushDraw

Homescreen :

• Event_TapShortcut

• Event_OnScreenMessage

• Event_OnScreenReply

Soundmanager got the event handler directly inside its library and service.

2017
4 https://gerrit.automotivelinux.org/gerrit/#/admin/projects/apps/agl-service-

soundmanager-2017
5 https://gerrit.automotivelinux.org/gerrit/#/admin/projects/staging/qlibsoundmanager
6 https://gerrit.automotivelinux.org/gerrit/#/admin/projects/staging/qlibhomescreen
7 https://gerrit.automotivelinux.org/gerrit/#/admin/projects/staging/qlibwindowmanager

Version 0.5 November 2017 – 4 / 13 –

https://gerrit.automotivelinux.org/gerrit/#/admin/projects/staging/qlibwindowmanager

Kickstart: New HMI Framework

2. How-to adapts HVAC to use new HMI
Framework

2.1. Clean old HMI usage code

HVAC use the old homescreen architecture and library, this has to been wiped before
going further.

We will use the new libhomescreen and header file is the same, inclusion will remains
but all related code will be removed from the app. Here from app/main.cpp

-#ifdef HAVE_LIBHOMESCREEN
 #include <libhomescreen.hpp>
-#endif

 int main(int argc, char *argv[])
 {
-#ifdef HAVE_LIBHOMESCREEN
- LibHomeScreen libHomeScreen;
-
- if (!libHomeScreen.renderAppToAreaAllowed(0, 1)) {
- qWarning() << "renderAppToAreaAllowed is denied";
- return -1;
- }
-#endif
-

As app name will be used several times, better to store it in a variable and use it:

 int main(int argc, char *argv[])
 {
+ QString myname = QString("HVAC");;

 QGuiApplication app(argc, argv);

2.2. Make WindowManager handle your app

New WindowManager use a configuration file describing layer mapping. By default, a
sample file, layers.json is used located in AFM_APP_INSTALL_DIR,
/var/local/lib/afm/application/windowmanager-service-2017/0.1 at time of writing this
guide.

You could create and use your own configuration file following format described in the
documentation8 setting up the environment variable LAYERS_JSON. To use this
environment variable you could add it in the windowmanager service unit file located

8 https://gerrit.automotivelinux.org/gerrit/gitweb?p=apps/agl-service-windowmanager-
2017.git;a=blob;f=doc/ApplicationGuide.md;h=25d87be52f11ec007457166bfbbaf1ba39fb3
f7b;hb=refs/heads/master#l193

Version 0.5 November 2017 – 5 / 13 –

Kickstart: New HMI Framework

in /usr/local/lib/systemd/user/afm-service-windowmanager-service-2017@0.1.service

or add it in a file that you may have to create /var/run/afm-debug/windowmanager-
service-2017@0.1.env.

Sample file known about default demo AGL app only. If you need to add yours, you
have to edit it. Following, an example in green:

"mappings": [
 {
 "role": "^HomeScreen$",
 "name": "HomeScreen",
 "layer_id": 1000,
 "area": { "type": "full" },
 "comment": "Single layer map for the HomeScreen, XXX: type is redundant,
could also check existence of id/first_id+last_id"
 },
 {
 "role": "MediaPlayer|Radio|Phone|Navigation|HVAC|Settings|Dashboard|POI|
Mixer|YourApp",
 "name": "apps",
 "layer_id": 1001,
 "area": { "type": "rect", "rect": { "x": 0, "y": 218, "width": -1,
"height": -433 } },
 "comment": "Range of IDs that will always be placed on layer 1001,
negative rect values are interpreted as output_size.dimension - $value",

 "split_layouts": [
 {
 "name": "Navigation",
 "main_match": "Navigation",
 "sub_match": "HVAC|MediaPlayer",
 "priority": 1000
 }
]
 },
 {
 "role": "^OnScreen.*",
 "name": "popups",
 "layer_id": 9999,
 "area": { "type": "rect", "rect": { "x": 0, "y": 760, "width": -1,
"height": 400 } },
 "comment": "Range of IDs that will always be placed on the popup layer,
that gets a very high 'dummy' id of 9999"
 }
]

We see that HVAC is already present, so far there is no need to change the file.

2.3. Make your app use WindowManager

As we take an existing app, WindowManager already know it, so it isn’t needed to
modify layers.json as see in the previous section.

Version 0.5 November 2017 – 6 / 13 –

Kickstart: New HMI Framework

This is an app using Qt, a GUI library already exist910 qlibwindowmanager, add the
header file to the main app file include statement as well as QQuickWindow to later
use bringing the window on screen explained in §2.5 chapter :

#include <QtCore/QDebug>
#include <QtCore/QCommandLineParser>
#include <QtCore/QUrlQuery>
#include <QtGui/QGuiApplication>
#include <QtQml/QQmlApplicationEngine>
#include <QtQml/QQmlContext>
#include <QtQuickControls2/QQuickStyle>
+#include <qlibwindowmanager.h>
+#include <QQuickWindow>
#include <libhomescreen.hpp>

Then instanciate a windowmanager object, this should be provided by the GUI library.

HVAC use QML engine, so add windowmanager object once arguments process. Once
you got a WindowManager you need to register your apps while requesting resources
and provide the app name:

 bindingAddress.setQuery(query);
 QQmlContext *context = engine.rootContext();
 context->setContextProperty(QStringLiteral("bindingAddress"),
bindingAddress);
 }
+
+ std::string token = secret.toStdString();
+ QLibWindowmanager* qwm = new QlibWindowmanager();
+
+ // WindowManager initialization
+ if(qwm->init(port,secret) != 0){
+ exit(EXIT_FAILURE);
+ }
+ // Request a surface as described in layers.json windowmanager’s file
+ if (qwm->requestSurface(myname)) != 0) {
+ exit(EXIT_FAILURE);
+ }
+ // Create an event handler against an event type. Here a lambda is
called when SyncDraw event occurs
+ qwm->set_event_handler(QLibWindowmanager::Event_SyncDraw, [qwm,
myname](json_object *object) {
+ fprintf(stderr, "Surface got syncDraw!\n");
+ qwm->endDraw(myname);
+ });
+
 engine.load(QUrl(QStringLiteral("qrc:/HVAC.qml")));

Once surface is ready, windowmanager notify the app with a SyncDraw event, then
app can began to draw on that surface its UI.

When drawing is finished app let the windowmanager know that drawing ends sending
it an event enddraw. Here drawing is just about empty the surface allocated to the

9 https://gerrit.automotivelinux.org/gerrit/gitweb?p=apps/agl-service-windowmanager-
2017.git;a=tree;f=client;h=d2303204f96c3d8e155cdece69939b60cf0b2f0d;hb=refs/heads
/master

10 https://gerrit.automotivelinux.org/gerrit/#/admin/projects/staging/qlibwindowmanager

Version 0.5 November 2017 – 7 / 13 –

Kickstart: New HMI Framework

app. QML will later write in it using HVAC.qml resource file.

Now that we handled windowmanager and surface ready to be displayed, we need to
command homescreen to handle launch of the application.

2.4. Add package config

To link to qlibwindowmanager and libhomescreen, we will add package name to the
.pro file. Here from the app/app.pro

 TARGET = hvac
 QT = quickcontrols2

+CONFIG += link_pkgconfig
+PKGCONFIG += qlibwindowmanager libhomescreen

2.5. Launch application using new Homescreen

Homescreen app provided by default manages apps launch as well as displaying
OnScreen message, by example a alert, and its answer.

To launch the HVAC application from new Homescreen we need to implement an event
handler like we did for windowmanager with SyncDraw event:

+
+ // HomeScreen
+ hs->init(port, token.c_str());
+ // Set the event handler for Event_TapShortcut which will be delivered
when the user click the short cut icon.
+ hs->set_event_handler(LibHomeScreen::Event_TapShortcut, [qwm, myname]
(json_object *object){
+ json_object *appnameJ = nullptr;
+ if(json_object_object_get_ex(object, "application_name",
&appnameJ))
+ {
+ const char *appname = json_object_get_string(appnameJ);
+ if(myname == appname)
+ {
+ qDebug("Surface %s got tapShortcut\n", appname);
+ qwm->activateSurface(myname);
+ }
+ }
+ });
+
 engine.load(QUrl(QStringLiteral("qrc:/HVAC.qml")));

Here we just ensure that event coming from is indeed for us comparing the
application_name with our app name. If so, application can requests windowmanager
to activate the surface.

Version 0.5 November 2017 – 8 / 13 –

Kickstart: New HMI Framework

2.6. Get application displays in homescreen

An additional step must be done to actually get the app displayed in homescreen.
Until then we only empty and prepare surface to get filled by QML. Which is done
with:

engine.load(QUrl(QStringLiteral("qrc:/HVAC.qml")));

 So, after writing image, an application requests rendering to windowmanager.

The signal “frameSwapped” means the end of writing application(QML) image, you
just have to activate the surface in reaction to that signal to get your app correctly
drawed in your homescreen:

 engine.load(QUrl(QStringLiteral("qrc:/HVAC.qml")));
+ QObject *root = engine.rootObjects().first();
+ QQuickWindow *window = qobject_cast<QQuickWindow *>(root);
+ QObject::connect(window, SIGNAL(frameSwapped()), qwm,
SLOT(slotActivateSurface()
+));

Here, slotActivateSurface is a function from GUI library qlibwindowmanager.cpp.

Version 0.5 November 2017 – 9 / 13 –

Kickstart: New HMI Framework

3. SoundManager

To show how to integrate soundmanager to your application, we will show the
example to use radio application11. The architecture is described in here12.

But audio architecture is under heavy discussing, so this contents must be modified.

3.1. Add package config

For Qt application, it is useful to use qlibsoundmanager, because we will add the
package name to the .pro file. Here from the app/app.pro

 TARGET = radio
 QT = quickcontrols2

+CONFIG += link_pkgconfig
+PKGCONFIG += qlibsoundmanager

3.2. Make your application use SoundManager

To enable radio app to use soundmanager, add header file to use. Here from the
app/main.cpp

#include <QtQml/QQmlApplicationEngine>
#include <QtQml/QQmlContext>
#include <QtQuickControls2/QquickStyle>
+ #include <qlibsoundmanager.h>

Then, initialize qlibsoundmanager with the port and token given by application
framework. With this variable, library establishes the connection to soundmanager
server.

query.addQueryItem(QStringLiteral("token"), secret);
bindingAddress.setQuery(query);
context->setContextProperty(QStringLiteral("bindingAddress"), bindingAddress);
+QlibSoundmanager *smw = new QlibSoundmanager();
+smw->init(port, secret);

11 https://gerrit.automotivelinux.org/gerrit/gitweb?p=apps/radio.git;a=summary
12 http://docs.automotivelinux.org/docs/apis_services/en/dev/reference/hmi-framework/3_3-

SoundManager-Guide.html

Version 0.5 November 2017 – 10 / 13 –

Kickstart: New HMI Framework

Finally, setup receiving reply/event signal from library.

In this example, we connect reply/event signal from qlibsoundmanager library to slot
function written in QML to deliver reply and the event of the sound state change.

+ engine.rootContext()->setContextProperty("smw",smw); // if you would
like to use library from QML
 engine.load(QUrl(QStringLiteral("qrc:/Radio.qml")));

+ QObject::connect(smw, SIGNAL(reply(QVariant)),
+ root, SLOT(slotReply(QVariant)));
+ QObject::connect(smw, SIGNAL(event(QVariant, QVariant)),
+ root, SLOT(slotEvent(QVariant, QVariant)));

3.3. Communicate with soundmanager

To use soundmanager, there are several phases to step.

➢ Register your application

➢ Connect your application(source) to sink

➢ Get approval feedback to output sound from Sound Manager, then make
decision to play/stop radio.

First, application needs to register application to get sourceID. Application name shall
be defined by system, then the source(application) list is defined in
/etc/audiomanager/configuration.xml. The sample configuration is located in here13.
SourceID variable is used for getting connectionID and audio policy management.
SourceID is returned by reply signal. In this example, sourceID is set in QML, but of
course this can be in C++ side. Here from app/Radio.qml.

ApplicationWindow {
 id: root
+ property int sourceID
+ property int connectionID
+ signal disconnected
+ signal paused
+ signal connected
+ function slotReply(msg){
+ var jstr = JSON.stringify(msg)
+ var content = JSON.parse(jstr);
+ var verb = content.response.verb
+ var err = content.response.error
+ switch(verb)
+ {
+ case "connect":
+ if(err == 0){
+ connectionID = content.response.mainConnectionID

13 https://gerrit.automotivelinux.org/gerrit/gitweb?p=apps/agl-service-soundmanager-
2017.git;a=tree;f=conf/audiomanager-config-
sample;h=0bf3f419afa40e295487e599f6d32c3a61f42140;hb=HEAD

Version 0.5 November 2017 – 11 / 13 –

Kickstart: New HMI Framework

+ }
+ break;
+ case "registerSource":
+ if(err == 0){
+ sourceID = content.response.sourceID
+ }
+ default:
+ break;
+ }
+ }
// Skipping
+ Component.onCompleted: {
+ smw.registerSource("radio")
+ }
}

The case of “connect” in slotReply is related to the next.

Second, in this example, we connect own to default sink when the radio application is
rendered. After rendering, WindowManager will emit flushDraw signal to applications,
so call connect function in that time. Of course, the timing of calling “connect” is
defined by user, for example, application can call “connect” reacted by user operation
such as touch operation, other incoming event and so on.

Sink means abstract output point of the audio stream. SinkID “default” is only
available for now, or you can designate as number.

+ qwm->set_event_handler(QLibWindowmanager::Event_FlushDraw, [&engine,
smw](json_object *object) {
+ QObject *root = engine.rootObjects().first();
+ int sourceID = root->property("sourceID").toInt();
+ smw->connect(sourceID, "default");
+ });

After calling “connect”, SoundManager will return reply with “mainConnectionID”.
Connection means the connection between source and sink.

Finally, let’s write the getting approval function. In this example, in main.cpp, the
event signal is connected to slotEvent function in QML.

+ function slotEvent(event,msg){
+ var jstr = JSON.stringify(msg)
+ var content = JSON.parse(jstr);
+ var eventName = content.event
+ switch(eventName)
+ {
+ case "soundmanager\/asyncSetSourceState":
+ if(sourceID == content.data.sourceID){
+ smw.ackSetSourceState(content.data.handle, 0)
+ switch(content.data.sourceState){
+ case "on":

Version 0.5 November 2017 – 12 / 13 –

Kickstart: New HMI Framework

+ connected()
+ break;
+ case "off":
+ disconnected()
+ break;
+ case "paused":
+ paused()
+ break;
+ }
+ }
+ break;
+ default:
+ break;
+ }
+ }

The event of “asyncSetSourceState” is automatically subscribed in the library.

After calling “connect” or an other application get connected, this event will be
emitted. An Application can decide the behavior in response to the
connected/disconnected/paused signals.

Version 0.5 November 2017 – 13 / 13 –

