

Introduction of Oct 19 Software Defined Vehicle Sessions

Oct 19, 2022 AGL F2F Workshop @Tokyo

Agenda

Time	Title	Speakers
11:00~11:05	Introduction of Overall Agenda	Jerry Zhao - Panasonic
11:05~12:00	Guest Speech: Software Defined Vehicle and OSS as key enabler for SDV - SBD Automotive	Masahiro Otsuka - SBD Automotive
12:00~13:00	Lunch	
13:00~14:15	SDV Technology Enablers in AGL - Virt-EG Update on VirtIO	Jerry Zhao - Panasonic Mikhail Golubev - OpenSynergy Michele Paolino - Virtual Open Systems Atsuya Nasu - Panasonic
14:15~14:30	Break	
14:30~15:30	SDV Technology Enablers in AGL - Container-EG Update on Container	Ilic Nenad - AWS
15:30~16:00	Break	
16:00~17:00	Guest Speech from SOAFEE/ARM: Software Defined AGL	Rod Watt - ARM

VirtIO & **Containers** enables software (applications) to be decoupled from hardware

VirtIO

Various Vehicle Hardware

Guest Speech from SBD Automotive The Software Defined Vehicle and OSS

Oct 2022

Masahiro Otsuka, SBD Automotive

VirtlO - A Common Device Framework to Achieve Software Defined Vehicle

Oct 2022

AGL Virtualization Expert Group Leader Jerry Zhao, Panasonic Automotive Systems Co., Ltd.

About AGL Virtualization Expert Group

Start of the Expert Group:

The expert group was created from a BoF held in the Munich AGL AMM 2016 meeting and started activities from 2017.

Responsibility:

The AGL Virtualization Expert Group (Virt-EG) is responsible to design and implement virtualization solutions for AGL.

• EG Members:

On average 10~20 members from different fields are joining the bi-weekly call. Panasonic started to serve as the leader of Virt-EG since 2020.

Interest Points:

Hypervisors and device virtualization solution. **Nowadays, Virt-EG is focusing on applying and extending standard device virtualization framework VirtIO for diverse AGL use cases to empower evolution to a Software-Defined AGL.**

Device Virtualization for Software Defined Vehicle

Cockpit Digital Transformation

Cockpit is going to be filled with digital instruments.

Device Virtualization: Specific Necessity in Automotive

<u>Common abstraction</u> of diverged devices among car models and <u>location</u> <u>transparency</u> of devices are especially critical for application software asset.

- Diversity of Devices due to Various Car Models
- Highly Distributed Architecture
- Conflicts between optimized allocation policies of applications and devices

Device Virtualization: Specific Necessity in Automotive

<u>Common abstraction</u> of diverged devices among car models and <u>location</u> <u>transparency</u> of devices are especially critical for application software asset.

 Even for centralized ECU, the same argument applies because the system inside is divided to multiple VMs

Device Virtualization: Specific Necessity in Automotive

<u>Common abstraction</u> of diverged devices among car models and <u>location</u> <u>transparency</u> of devices are especially critical for application software asset.

• In addition, same issue will apply to Virtual ECU constructed in Server/Cloud where has completely different device natures from the one on the automotive edge.

Device Virtualization: Key to Software Defined Vehicles

Software Defined Vehicle needs a common device virtualization framework to decouple software implementation from diverse hardware targets across vehicle variants/generations, architectures (single/multiple-ECU) and development environments (real/virtual ECU)

VirtlO as A Common Device Virtualization Framework

Overview of Device Virtualization in AGL - Concept

Device Virtualization with VirtIO benefits in establishing a complete and healthy ecosystem for AGL to enhance interchangeability and interoperability in various scenarios.

Mikhail from Michele from Virtual OpenSynergy Open System (15min) (15min)

Non-Hypervisor

AGL

VirtIO

SoC

Environment

Multi-ECU
Environment

AGL

VirtlO

SoC

SoC

Nasu from Panasonic Automotive (15min)

Jerry from Panasonic

Automotive

(5min)

THE LINUX FOUNDATION

VirtlO on Hypervisor

- Presenter: Mikhail Golubev, OpenSynergy
- Slides: Virtual I/O (VIRTIO) based virtualization in AGL

VirtlO on Non-Hypervisor

- Presenter: Michele Paolino, Virtual Open Systems
- Slides: <u>Virtio-loopback: a common device interface</u> between Virt-AGL and Non-Virt AGL

VirtlO on Multi-ECU

- Presenter: Atsuya Nasu, Panasonic Automotive Systems Co., Ltd.
- Slides: Introduction of UnifiedHMI

VirtIO with Cloud-Native AGL

Jerry Zhao, Panasonic Automotive Systems Co., Ltd.

VirtIO with Cloud-native AGL

Apps Maximized commonality of AGL Software among SoCs, Extensi AGL Middleware virt/non-virt, cloud/nonon cloud environment Utilize VirtIO as a well-defined device HAL Linux even for non-virt AGL may further helps to Use VirtIO as Common I/F with Cloudreduce fragmentation across SoCs and VirtIO Interface based AGL to enhance encourage "AGL-ready BSP" interchangeability between cloud-AGL and native-AGL Proprietary Device Proprietary Device Proprietary Device **Emulated Device** Drivers A Drivers B Drivers C Local/Cloud Server SoC A SoC B SoCC Develop & Test in Cloud Deploy in Native (Real HW)

Virtual AGL Running On MacBook

- EG Member Francois from the company Shokubai has created a demo to run the AGL with VirtIO on the top of MacBook with Apple MacOS 13 virtualization framework.
- This can be done without any changes to AGL thanks to VirtIO.

https://www.youtube.com/watch?v=5DT-l2sWeVY

Cloud-native AGL Work between Virt-EG & Container-EG

- Establish a reference environment of cloud-native AGL
- Make VirtIO & Orchestration work on both cloud and edge AGL instances, and enable developer to develop HMI services on cloud environment which graphic & audio can be verified on local clients
- Organize demos & presentations and contribute work to AGL

Instrument Cluster & IVI which are most related to UI/UX and need rapid development & OTA are one of the automotive devices that enjoy benefits from cloud-native most.

Advance Notice: Step 1 MVP to be shown in CES AGL Booth

Thanks to **VirtIO**, **same AGL binary** is working on both AWS Cloud (Graviton) and AGL Reference Hardware.

Closing Mark

Overview of Device Virtualization in AGL - Summary

(Steady Progress) Most of basic & multi-media device for common use case has been supported in AGL. Further extension and support for more advanced use case in progress.

AGL
VirtIO

SoC

Non-Hypervisor

(Activity started) Detailed design of loop-back features have been done and under review from EG members.

Move to virtio-blk and virtio-input support next.

(Activities Started) Already have an open source github for "Unified HMI" (Virtual Display) and starting work to integrate with AGL UCB aiming at OO/PP.

Multi-ECU

Environment

AGL AGL

VirtlO

SoC SoC

(New Activities) Being work together with container-EG and going to show demos in ALS/CES

Cloud Environment

AGL

VirtIO

Emulated Device

cloud

Welcome to AGL Virt-EG

Join the AGL Virt-EG biweekly call to discuss and contribute to define the future of automotive together with us!

https://wiki.automotivelinux.org/eg-virt

Q&A

Guest Speech from ARM: Software Defined AGL with SOAFEE

Oct 2022 Rod Watt, ARM

