

Remote Vehicle Interaction Architecture

An open source solution for the automotive industry

Magnus Feuer - Jaguar Land Rover

Background

- 80% of connected vehicle functionality shared across platforms
 - Core IVI and Server functionality are similar, regardless of vendor. The final 20% are the services that defines the user experience.
- A shared, open source platform will benefit OEMs
 - A joint architecture and reference implementation allows OEM to minimize cost, vendor dependencies, and security risks, letting them focus on applications and services that make a difference.
- A shared, open source platform will benefit service providers
 - A common architecture allows service providers to easily port their products to additional OEMs, thus giving them a wider revenue stream from multiple vendors.

Objectives

Open Source reference implementation of RVI system

End-to-end system for PoC. Prepared for production upgrade.

Hosted by Linux Foundation

AGL publishes open source designs, specifications, and reference implementation to guarantee equal technology access.

Pluggable architecture

APIs are core – Reference system is an example.

Device, service, and connection agnostic

Any device shall be able to access services on any other visible device, with or without Internet connection.

Benefits

Enable new breed of 3rd party service providers

Open source implementation enables start-ups to develop in-vehicle apps and their corresponding backend services, and showcase the finished product to OEMs.

Alleviate vendor dependency

OEM can replace components at will, using either external or internal resources. All IP of the replaced components belongs to the OEM.

Wider talent pool

Large competence base provided through open source community, OEMs, app developers, and professional service vendors.

Feature Set

Peer-to-peer based

Two nodes can exchange services without an internet connection.

Provisioning

Services and nodes can be added and deleted from the system.

Authentication & authorization

All executed services are authenticated and authorized against certified credentials.

Service discovery

Services and applications can discover and invoke other services.

Invocation

Services can be remotely invoked over a sparsely connected network.

Upcoming Demos

Remote HVAC control

Pre-set the climate control of your vehicle from your mobile phone.

Software Over The Air (SOTA)

Transfer, install, and validate a software package from a backend server to an IVI unit.

Remote CAN bus monitoring

Remotely subscribe to specific CAN frames, and have them delivered to a backend server.

Remote control of IVI nav system

Use remote mobile device to setup POI in vehicle's navigation system.

Architecture

Architecture - Overview

API based

The API is the driving technology. Implementation is secondary.

- Data Router commonality
 Data Router connects all services on all devices.
- **Mix of open and closed source**Components can be off the shelf, OSS, proprietary, or a combination of the above.
- Network complexity shielding
 A clean transaction API alleviates services and applications from connectivity concerns.

Architecture – Data Router

Service Edge

Handles all traffic toward locally connected services.

Authorization

Handles certificates and authorization for all traffic.

Store and Forward

Handles traffic holding when destinations are unavailable.

Data Link

Controls communication channels to other node.

Service Discovery

Identifies and locates local and remote services.

Protocol

Encodes and transmits traffic to other nodes.

Architecture – Backend Server

Data Router Standard doploym

Standard deployment.

Provisioning

Creates and distributes certificates granting access rights to nodes.

SOTA server

Manages and distributes software packages to nodes.

Services

Services – Requirements

Global namespace for all services on all nodes, worldwide

All services on all provisioned devices must be addressable through a single schema.

Localized service discovery

Locally connected nodes must be able to discover each other's services without Internet access.

Zero configuration

No configuration outside authorization shall be needed for a newly deployed node to join the system.

Network agnostic

A service shall be accessed the same way, regardless of the communication method used.

Services – Addressing

Single name space for all services

New services can be addressed by creating a unique name for them.

Service name identifies hosting node

Each service name, being unique across the system, carries enough information for Service Discovery to identify where the node can be found.

Hide network complexity

All service interaction with other services are done through the service name space, allowing the actual communication to be carried out behind the scenes.

Services – Service Name Example

#	Name	Description
1	Туре	Traffic type accepted by service
2	Organization	Specifies a sub-section hosted by a specific entity
3	VIN sub-tree	Specifies sub section for all vehicles
4	VIN	Vehicle Identification Number
5	Service name	Name of service
6	Command	Command supported by service

Services - Routing

1. Application sends RPC command

HVAC App sends an RPC command, targeting a given service URI, to Service Edge.

2. Locate target node

Service Edge asks local service Service Discovery to resolve service name to a network address.

3. Return network address

Specifies where the target service can be reached.

4. Send request to Vehicle

The vehicle data router processes the command.

5. Forward request to HVAC Service

The HVAC Service in the vehicle executes the command.

Authorization

Authorization – Overview

Certificate based

Certificates, signed by a trusted provisioning server, grants node access to services.

Self-carried authorization

A node presents its certificates to another node to access its services, without provisioning server connection.

• Service – service specific certificates

A certificate authorizes a specific set of services to access another specific set of services, and cannot be used outside that context.

Authorization – Use Case

1. Create and sign certificate

A certificate granting access to the mobile device is created and signed with provisioning server's private key.

2. Distribute certificate to mobile device

The targeted device receives its certificate

3. Send request and certificate to Vehicle

The certificate states that mobile device has the right to execute the given request

4. Validate credentials

The certificate and request is validated by the vehicle through a root certificate

5. Execute request

The validated command is forwarded to the target service for execution

Authorization – Examples

Access List Format

[type]:[organization]/[path] + wildcards

rpc:jaguarlandrover.com/vin/sajwa71b37sh1839/body/lock

Specifies a specific vehicle's lock rpc in the body service.

rpc:jaguarlandrover.com/vin/*/media/volume

Specifies the volume control command of the media service on all vehicles.

msg:jaguarlandrover.com/cloud/vehicle tracking/*

Specifies all commands under the vehicle_tracking service.

Authorization – Topics not covered

Protection of certificate inside a node

A credential received by the mobile device needs to be secured in accordance with the mobile device/IVI/server platform

Certificate – device binding

A stolen certificate can be presented by another device to gain service access. Device binding is done on an implementation level using hardware-specific mechanisms

Secure communication

Protocol implementations are responsible for securing data transmission between nodes using SSL/TLS or similar technologies

Conclusion

Connected Vehicle architecture for next generation services

Open source design, specification, and reference implementation

Benefits the whole industry

Hosted and driven by AGL

Next Steps

1. Form AGL expert group

The group will drive the specification and implementation work.

2. Complete design, specification, and planning

Review and rework of design is followed by detailed specifications and project roadmap.

3. Resource commitment

Participants commit funds or FTE for reference system implementation.

4. Build reference implementation

AGL will coordinate participating vendors' effort to build the OSS version of the architecture.

Thank You

Magnus Feuer

System Architect – Open Software Initiative

mfeuer@jaguarlandrover.com

High Level Design Draft available at:

https://download.automotivelinux.org/POC/PoC_Spec/15-456-POC-Tizen3-RVI-HLD_Draft4_clean.pdf

-or-

http://bit.ly/1pcOu0Y