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What is PipeWire ?



3

Are you familiar with PulseAudio ?
● Sound system / Sound card proxy for audio applications

● Transfer audio between machines

● Change formats, mix, re-position on the fly

● Device auto-configuration, including Bluetooth devices

● Echo cancellation & other effects
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PipeWire
● Initial idea: PulseAudio for video

● Now: generic multimedia platform service

– Video capture server
● Camera and other video sources (ex. gnome-shell screencast)

– Audio server
● PulseAudio and JACK (pro-audio) replacement

● Borrowing ideas also from CoreAudio, AudioFlinger, and others…

– Now implementing the audio system in Automotive Grade Linux
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Architecture
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Architecture
● Multi-process, graph based processing

– Simple JACK-like scheduler

● Extensible: types, protocols, …

● Plugins based on SPA (Simple Plugin API)
– Header-only C library with zero dependencies

– Extremely lightweight data structures

– “Like GStreamer, but not so heavy!  - Wim Taymans”

● External session manager
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PipeWire Session Manager
● Setup of devices

– DSP processing

– Mixers

– Effects

● Management of links/nodes

● Security and access control of clients

● Policy
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Performance & Efficiency
● Zero-copy with modern linux kernel APIs (memfd, dmabuf)

● eventfd & timerfd to wake up the processes

● Low-latency real-time capable + standard high-latency
– < 1.5 milliseconds possible on desktop

● Much lower CPU usage than PulseAudio
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CPU Usage Statistics
Playback of a 24bit 96kHz 5.1 channel file, downmixed to 3.1 and resampled to 48kHz

21.33 ms 1.33 ms 2 clients @ 800 MHz

0.7

2.3
2.7
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% CPU

● Measurements:

– 21.33 ms (1024 samples / buffer)

– 1.33 ms (64 samples / buffer)

– 1.33 ms with 2 clients

– 1.33 ms with CPU pinned @ 800 MHz

● Measurements on 

Intel(R) Core(TM) i7-4770 CPU @ 3.40GHz

● Comparatively, on 1.33 ms, PulseAudio 

uses 100% CPU and fails (underruns)
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Security
● Fine-grained object access controls per client

– Visible (R)

– Write data (W)

– Execute methods (X)

● Each client can be made to see  an entirely different graph“ ”

● Session manager applies permissions
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Who is behind this

● Author: Wim Taymans
– Well-known old GStreamer developer & ex-maintainer

– Sponsored by: Red Hat

● Embraced by PulseAudio developers
– Seen as the next generation of PulseAudio

● Welcomed by ALSA and JACK developers

● License: MIT
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Status
● Version 0.2 distributed in fedora

– Used for video only

● Version 0.3 to be released soon
– Estimated for later this year

– A lot of audio work & refactoring done

– Used in AGL
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PipeWire in AGL
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PipeWire in Automotive Grade Linux
● Audio system implemented with PipeWire, replacing 4A

– Mixer, Media player & Radio player using the native API

– ALSA compatibility plugin available

● Session manager: WirePlumber

● Merged in Happy Halibut (8.0.0) RC2

● In the future also: video
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WirePlumber
● First session manager implementation

● Target: reusable session manager for embedded use cases
– we’ll see about desktop…

● Modular & extensible, like PipeWire

● Based on GObject
– To support writing modules using bindings in other languages (TODO)
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WirePlumber concepts
● Graph abstraction: Endpoint

– Closer to PulseAudio’s representation (sources, sinks, source-outputs, sink-inputs)

– Described by name & media-class (Audio/Source, Audio/Sink, 

Stream/Audio/Input, Stream/Audio/Output)

● Extensibility: Modules & Factories

● Pipewire Proxies
– GObject-ify the pipewire API (ease of use + access from bindings)
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Endpoints
● Abstract the graph around the device

● Abstract controls (volume, mute, brightness, contrast, ...)

● Abstract link / unlink operations

● Abstract streams 
– paths to/from the device with specific properties

● Bridge to functionality implemented in hardware
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Software DSP Endpoint
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Hardware DSP Endpoint
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Policy Management
● Policies implemented by modules

● Clients have roles with priorities:
– Multimedia, Navigation, Emergency, ...

● Highest priority wins

● Equal priority: last one wins

● Audio in other apps is automatically paused & restored



22

Policy Management TODO
● Re-work the internal API

● Introduce bindings for scripting languages
– Allow people to define custom logic with scripts

● Allow mixing streams with different volumes

● Volume ramping & cross-fading for changes

● Stop signal, in addition to pause
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Other areas needing work
● Bluetooth audio support (planned for AGL 8.0.1)

● Unicens hardware support (planned for AGL 8.0.2)

● Better configuration
– Currently limited options in wireplumber.conf

● Better security
– Mechanisms exist but currently all clients are granted full permissions

● Documentation
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PipeWire Audio APIs



25

Audio Stream (pw_stream)
● Nicer than PipeWire low-level API

● Takes input from client (asynchronously)

● Does conversion
– Resampling

– Channel mixing / volume

– Format conversion

– Channel splitting into DSP

– Decouples server buffer size from client requested latency

● Flush / drain
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In GStreamer
● pipewiresrc / pipwiresink

– Available upstream

– Built mainly for video; have issues with audio at the moment

● pwaudiosrc / pwaudiosink
– Available in AGL

– Smooth operation with audio

– Upstream-Status: Submitted [https://github.com/PipeWire/pipewire/pull/140]

● All built with the streams API

https://github.com/PipeWire/pipewire/pull/140


27

Compatibility APIs

● ALSA apps
– PipeWire PCM plugin

– Built with streams API

● PulseAudio apps
– Replacement libpulse.so, libpulse-mainloop-glib.so

– Built with streams API

● JACK apps
– Replacement libjack.so

– Built on top of low-level PipeWire
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Mixer API
● Mixer controls are implemented in the SM

– But exposed through PipeWire

● Upstream: no support

● In AGL:
– Mixer controls exposed through a virtual Endpoint object

– audiomixer binding for easy access

– Design subject to changes – should be upstreamed
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WirePlumber API
● For wireplumber modules only

● Implement endpoints
– add support for custom hardware, filters, etc…

● Implement policy

● Unstable – subject to change



30

Showtime
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Thank you!
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We are hiring
col.la/careers

http://col.la/careers
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