
Open FirstOpen First

PipeWire in the heart
of car multimedia

George Kiagiadakis
Senior Multimedia Engineer

2

What is PipeWire ?

3

Are you familiar with PulseAudio ?
● Sound system / Sound card proxy for audio applications

● Transfer audio between machines

● Change formats, mix, re-position on the fly

● Device auto-configuration, including Bluetooth devices

● Echo cancellation & other effects

4

PipeWire
● Initial idea: PulseAudio for video

● Now: generic multimedia platform service

– Video capture server
● Camera and other video sources (ex. gnome-shell screencast)

– Audio server
● PulseAudio and JACK (pro-audio) replacement

● Borrowing ideas also from CoreAudio, AudioFlinger, and others…

– Now implementing the audio system in Automotive Grade Linux

5

Architecture

7

Architecture
● Multi-process, graph based processing

– Simple JACK-like scheduler

● Extensible: types, protocols, …

● Plugins based on SPA (Simple Plugin API)
– Header-only C library with zero dependencies

– Extremely lightweight data structures

– “Like GStreamer, but not so heavy! - Wim Taymans”

● External session manager

8

PipeWire Session Manager
● Setup of devices

– DSP processing

– Mixers

– Effects

● Management of links/nodes

● Security and access control of clients

● Policy

9

Performance & Efficiency
● Zero-copy with modern linux kernel APIs (memfd, dmabuf)

● eventfd & timerfd to wake up the processes

● Low-latency real-time capable + standard high-latency
– < 1.5 milliseconds possible on desktop

● Much lower CPU usage than PulseAudio

10

CPU Usage Statistics
Playback of a 24bit 96kHz 5.1 channel file, downmixed to 3.1 and resampled to 48kHz

21.33 ms 1.33 ms 2 clients @ 800 MHz

0.7

2.3
2.7

6

% CPU

● Measurements:

– 21.33 ms (1024 samples / buffer)

– 1.33 ms (64 samples / buffer)

– 1.33 ms with 2 clients

– 1.33 ms with CPU pinned @ 800 MHz

● Measurements on

Intel(R) Core(TM) i7-4770 CPU @ 3.40GHz

● Comparatively, on 1.33 ms, PulseAudio

uses 100% CPU and fails (underruns)

11

Security
● Fine-grained object access controls per client

– Visible (R)

– Write data (W)

– Execute methods (X)

● Each client can be made to see an entirely different graph“ ”

● Session manager applies permissions

12

Who is behind this

● Author: Wim Taymans
– Well-known old GStreamer developer & ex-maintainer

– Sponsored by: Red Hat

● Embraced by PulseAudio developers
– Seen as the next generation of PulseAudio

● Welcomed by ALSA and JACK developers

● License: MIT

13

Status
● Version 0.2 distributed in fedora

– Used for video only

● Version 0.3 to be released soon
– Estimated for later this year

– A lot of audio work & refactoring done

– Used in AGL

14

PipeWire in AGL

15

PipeWire in Automotive Grade Linux
● Audio system implemented with PipeWire, replacing 4A

– Mixer, Media player & Radio player using the native API

– ALSA compatibility plugin available

● Session manager: WirePlumber

● Merged in Happy Halibut (8.0.0) RC2

● In the future also: video

16

WirePlumber
● First session manager implementation

● Target: reusable session manager for embedded use cases
– we’ll see about desktop…

● Modular & extensible, like PipeWire

● Based on GObject
– To support writing modules using bindings in other languages (TODO)

17

WirePlumber concepts
● Graph abstraction: Endpoint

– Closer to PulseAudio’s representation (sources, sinks, source-outputs, sink-inputs)

– Described by name & media-class (Audio/Source, Audio/Sink,

Stream/Audio/Input, Stream/Audio/Output)

● Extensibility: Modules & Factories

● Pipewire Proxies
– GObject-ify the pipewire API (ease of use + access from bindings)

18

Endpoints
● Abstract the graph around the device

● Abstract controls (volume, mute, brightness, contrast, ...)

● Abstract link / unlink operations

● Abstract streams
– paths to/from the device with specific properties

● Bridge to functionality implemented in hardware

19

Software DSP Endpoint

20

Hardware DSP Endpoint

21

Policy Management
● Policies implemented by modules

● Clients have roles with priorities:
– Multimedia, Navigation, Emergency, ...

● Highest priority wins

● Equal priority: last one wins

● Audio in other apps is automatically paused & restored

22

Policy Management TODO
● Re-work the internal API

● Introduce bindings for scripting languages
– Allow people to define custom logic with scripts

● Allow mixing streams with different volumes

● Volume ramping & cross-fading for changes

● Stop signal, in addition to pause

23

Other areas needing work
● Bluetooth audio support (planned for AGL 8.0.1)

● Unicens hardware support (planned for AGL 8.0.2)

● Better configuration
– Currently limited options in wireplumber.conf

● Better security
– Mechanisms exist but currently all clients are granted full permissions

● Documentation

24

PipeWire Audio APIs

25

Audio Stream (pw_stream)
● Nicer than PipeWire low-level API

● Takes input from client (asynchronously)

● Does conversion
– Resampling

– Channel mixing / volume

– Format conversion

– Channel splitting into DSP

– Decouples server buffer size from client requested latency

● Flush / drain

26

In GStreamer
● pipewiresrc / pipwiresink

– Available upstream

– Built mainly for video; have issues with audio at the moment

● pwaudiosrc / pwaudiosink
– Available in AGL

– Smooth operation with audio

– Upstream-Status: Submitted [https://github.com/PipeWire/pipewire/pull/140]

● All built with the streams API

https://github.com/PipeWire/pipewire/pull/140

27

Compatibility APIs

● ALSA apps
– PipeWire PCM plugin

– Built with streams API

● PulseAudio apps
– Replacement libpulse.so, libpulse-mainloop-glib.so

– Built with streams API

● JACK apps
– Replacement libjack.so

– Built on top of low-level PipeWire

28

Mixer API
● Mixer controls are implemented in the SM

– But exposed through PipeWire

● Upstream: no support

● In AGL:
– Mixer controls exposed through a virtual Endpoint object

– audiomixer binding for easy access

– Design subject to changes – should be upstreamed

29

WirePlumber API
● For wireplumber modules only

● Implement endpoints
– add support for custom hardware, filters, etc…

● Implement policy

● Unstable – subject to change

30

Showtime

31

Thank you!

32

We are hiring
col.la/careers

http://col.la/careers

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32

