

AGL F2F meeting @ San Jose

July 2017

Proposal for AGL Sound
management

Naohiro Nishiguchi

nnishiguchi@jp.adit-jv.com

Who am I ?

 I have more than 10 years experiences in IVI product development

for Audio domain

 Application layer

 Middleware (e.g. Media playback engine, Beep playback engine)

 Audio routing management to adapt/configure real customer

projects

 ALSA

 I am audio experts from low-level to high-level application layer

covered, and had been working more on customer project.

 Currently, I started more on platform, especially audio routing

management framework to be more easily applicable to actual

customer projects.

Slide 2

Contents

 Use cases in automotive

 System architecture

 Requirement for automotive sound management

 Comparison between Advanced ALSA audio agent and Genivi Audio

manager

 Proposal

 Sound manager PoC

Slide 3

Use case in automotive

 Example Use Cases

 Active Source Change

 Driver is listening to Mediaplayer in the car.

 Incoming phone call and answer the phone

 IVI system automatically pause Mediaplayer, and then play Phone sound.

 After Phone call is completed, IVI system automatically resume play Mediaplyer

 Last Audio (Persistence)

 Driver is listening to Radio in the car.

 Driver turns off/on the engine.

 IVI system automatically start playing Radio.

 Mixing & Volume Attenuation

 Driver is listening to Radio in the car.

 Car detect moving objects when parking.

 IVI system automatically mute(or reduce)the volume of Radio, and then start

playing Alarm using another speaker.

 After Alarm is completed, IVI system automatically recover the volume level of

Radio.

Slide 4
Implicit policy management is required

System architecture

 There are several Hardware architectures as presented by MAZDA in ALS 2017

 Compact

 There are several communication protcol between SoC and others.

 Sound devices are connected to SoC directly.

 All audio streaming are visible and appliication can control audio streaming and volume

directly.

 SoC is master of volume

 Luxury

 There are several communication protcol between SoC and others.

 Some sound devices are NOT connected to SoC.

 Some audio streaming are INVISIBLE and application can NOT control audio streaming

and volume. e.g. Meter, Camera to AMP

 External ECU is master of volume

Slide 5

DSP/ASIC Camera

Deck

MIC MIC

Display

Meter

MIC AMP

AV stream

Controller

SoC

Camera

Deck

MIC MIC

Display

MIC AMP

SoC

Compact spec Luxury spec

Several types of hardware have to be supported

Luxury

Invisible source / sink

Invisible streaming

Volume master is

external

compact

Visible source / sink

Visible streaming

Volume master is SoC

Requirement for automotive sound
management

Slide 6

Active Source Change

Last Audio

Mixing & Volume

attenuation

Several communication

methods

Shall manage sound route regardless of source

and sink location.

Shall have a persistency for sound source and

volume.

Shall be able to be used by applications easily.

Shall be extensible (independent from specific

routing mechanism to control)

Shall know all sound sources and sinks in system

Shall be able to apply business logic implicitly

Shall manage volume regardless of the master of

volume location.

Shall be reliable

 Requirement mapping
use cases & system architecture Requirements

Comparison between Advanced ALSA
audio agent and Genivi Audio manager

Requirements AAAA GAM

Shall be able to apply business

logic implicitly
???
The feasibility of “Pause” is unclear.

FEASILBE

Shall have a persistency for sound

source and volume.
FEASILBE
Cooperation with other components is

required

FEASILBE
Already exist

Shall know all sound sources and

sinks in system
FEASILBE
By dedicated binder

FEASILBE
By registration mechanism

Shall manage sound route

regardless of source and sink

location.

FEASILBE
Dedicated binding development is required

for external

FEASILBE
Dedicated plugin development is

required for external

Shall manage volume regardless of

the master of volume location
???
How to abstract external source?

FEASILBE
Dedicated plugin development is

required for external

Shall be able to be used by

applications easily.
It is general in Linux It is OSS.

Shall be extensible (independent

from specific routing mechanism to

control)

Dedicated binding is required Dedicated plug-in is required

Shall be reliable Developing Already in the market

Slide 7 There is no big deference between AAAA and GAM in requirement point of view

 Requirement coverage

Comparison between Advanced ALSA
audio agent and Genivi Audio manager

Slide 8

 Architecture point of view
User Interface

Daemon

Routing plugin

ALSA

Routing plugin

MOST/Eth-AV

Controller

plugin

MOST / Eth-AV Sound card

PCM

CTL

Command plugin

Application Binder

lib asound (alsa-lib)

GAM

Comparison between Advanced ALSA
audio agent and Genivi Audio manager

Slide 9

 Architecture point of view
User Interface

Daemon

Routing plugin

ALSA

Routing plugin

MOST/Eth-AV

Controller

plugin

MOST / Eth-AV Sound card

PCM

CTL

Command plugin

Application

lib asound (alsa-lib)

AAAA GAM

Interface High level Binding Command plugin

Policy ALSA UCM + ??? Controller plugin

Adaptation HAL, Optional Unicens Binding
Dedicated plug-in development is required for

external

Routing plugin ALSA and MOST/Eth-AV
Dedicated plug-in development is required for external

Play streaming App -> ALSA App -> ALSA

GAM

There is no big deference in architecture point of view.

Complexity of both is not different

Proposal

 We can realize requirements whichever we choose AAAA or GAM

 There is no big difference between AAAA and GAM in requirement and

architecture point of view.

 Realization with AAAA has already been realized by GAM.

 I suggest using GAM for sound policy management

because:

 In order to develop sound management of AGL earlier, it is better to use

existing software.

 GAM is already integrated in AGL

 Interface and sequence of GAM are already specified and published.

 GAM has been already evaluated in the market.

 We should focus on integrating new technologies (e.g. UNICENS, CAN

communication or something) to sound management of AGL, rather than

implementing new back end of sound management.

 We already started PoC development to apply GAM to Binder

Slide 10

Sound manager PoC - schedule -

 PoC

 For CES2018, we are developing sound manager PoC with TOYOTA.

 Schedule

Slide 11

Sound manager Binding

Sound manager PoC - Architecture -

Slide 12

 Architecture
User Interface

Daemon

Routing plugin

ALSA
Routing plugin

MOST

Controller

plugin

MOST / Eth-AV Sound card

PCM CTL

Command/routing plugin

Application Binder

lib asound (alsa-lib)

GAM

Need to develop

Already exist

Legend

AMB

We can also make

this using UNICENS

App business block

Sound manager PoC - interface -

 Interface List
＃ Interface

1 connect (sourceID, sinkID, &mainConnectionID)

For command plugin

2 disconnect (mainConnectionID)

3 setVolume (sinkID, volume)

4 volumeStep (sinkID, volumeStep)

5 setSinkMuteState (sinkID, muteState)

6 getVolume (sinkID, &mainVolume)

7 getListMainConnections (&listConnections)

8 cbNewMainConnection (mainConnection)

9 cbRemovedMainConnection (mainConnectionID)

10 cbMainConnectionStateChanged (mainConnectionID, connectionState)

11 cbVolumeChanged (sinkID, volume)

12 cbSinkMuteStateChanged (sinkID, muteState)

13 cbNewSource(source)

14 cbNewSink(sink)

1 asyncAbort (&handle)

For routing plugin

2 asyncConnect (&handle, &connectionID, sourceID, sinkID, connectionFormat)

3 asyncDisconnect (&handle, connectionID)

4 asyncSetSinkVolume (&handle, sinkID, volume, ramp, time)

5 asyncSetSourceState (&handle, sourceID, state)

6 ackConnect (handle, connectionID, error)

7 ackDisconnect (handle, connectionID, error)

8 registerSink (&sinkData, &sinkID)

10 registerSource (&sourceData, &sourceID)

12 hookInterruptStatusChange (sourceID, interruptState)

13 hookSourceAvailablityStatusChange (sourceID, &availability)

14 ackSetVolumes (handle, &listvolumes, error)

Sound manager PoC - sequence -

Slide 14

sd Registration

Application

Sound manager

Binder

GAM

alt registration type

[Dynamic]

[Static]

alt registration type

[Dynamic]

[Static]

registerDomain()

cbNewSink()

registerSource()

registerSink()

cbNewSource()

registerSource()

cbNewSink()

registerSink()

registerSink()

registerSource()

cbNewSource()

 Sequence

Sound manager PoC - sequence -

 Sequence

Slide 15

sd Release

Application

Sound Manager
Binder

GAM

asyncDisconnect()

disconnect()

cbMainConnectionStateChanged()

ackDisconnect()

close()

asyncDisconnect()

disconnect()

stop Playing()

acksetSourceState()

cbMainConnectionStateChaged()

acksetSetSourceState()

setSourceState()

ackasyncDisconnect()

setSourceState()

removedMainConnection()

sd Request

Sound Manager
Binder

GAM

Application

cbMainConnectionStateChanged()

ackConnect()

connect()

open()

ackSetSourceState()

asyncConnect()

setSourceState()

ackConnect()

connect()

cbMainConnectionStateChanged()

cbNewmainConnection()

asyncConnect()

acksetSourceState()

start playing()

cbNewMainConnection()

setSourceState()

Slide 16

EOF

Appendix

 There are major 4 patterns of arbitration(policy) in automotive

1. The latter source win

Discards the former source and output the latter source.

2. The latter source win and the former source pause

Pauses the former source and output the latter.

3. The latter loose

Continues former source and discards the latter source.

4. The latter source is put on hold

Continues former source and puts latter source on hold

Slide 17

Queuing management is required

