Rule Based Arbitration
Outline

• What is the Rule Base Arbitration
• Background
• The Advantage of Rule based arbitrator
• Rule Base Arbitration
 • Ex. Screen transition Spec.
 • What can be defined as a rule
 • Sample of basic rule definition
 • Sample of Exception rule def
• Software structure
 • Overview
 • Rule-based arbitrator structure
• Schedule
What is the Rule Base Arbitration?

When several information for driver (Content) needs to be notified simultaneously, RBA decides which content is prioritized.
Background

- Issue of legacy technology:
 - Limit of status transition and Matrix
 - Contents are increased in every model.
 - Huge effort is needed for spec change.
 - Huge maintenance effort is needed due to existing spec is unclear.

- HMI Manager
 - Displaying preferable information to suitable area (display, position) based on driver’s character, preference, status and driving scene.
 - Flexible display arbitration for consolidated cockpit.

 ~Difficult to present by Status transition and Matrix~

Display arbitration will be more complex because of many scene, contents are increased for example autonomous driving.
Flexible arbitration logic is needed as base technology for realizing consolidation cockpit and HMI Manager concept
Rule Base Arbitration
- The Advantage of Rule based arbitrator

• For OEM
 • Intention/background of spec. can be ruled as it is.
 -> To prevent specs from becoming a dead letter
 -> To keep simple and high maintainability
 • Can confirm concrete behavior of spec. with simulator/actual hardware
 • Specification can be evaluated comprehensively.

• For Tier-x Supplier
 • To avoid complex software implementation.
 • Can reduce validation cost because spec has validated by OEM

<table>
<thead>
<tr>
<th>New Point</th>
<th>Conventional</th>
<th>Rule based</th>
<th>Expected effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spec. def.</td>
<td>Manual creation</td>
<td>Automatic generation by tool</td>
<td>Production quality can be assured in early sample.</td>
</tr>
<tr>
<td>Rule def.</td>
<td>Filling arbitration rule</td>
<td>Constrains formula</td>
<td></td>
</tr>
<tr>
<td></td>
<td>matrix table</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Product Software</td>
<td>Depends on HMI-FW</td>
<td>Independent of HMI-FW, OS</td>
<td>Reduce cost for developing</td>
</tr>
</tbody>
</table>
Rule Base Arbitration

Legacy technology: Transition matrix

All behavior are defined in one matrix table.

Example: State transition design with table

Once A is added, all the relationships with other display contents should be considered.

Problem

Many combination is increased for arbitration matrix, even if only one content is added.

-> Increasing much effort.

New technology: Rule base design

Contents displaying policy are defined as abstracted rule and judge by RBA engine.

Example: Rule based design

Once C is added, only define the rule to apply to C.

Expected effort

Even if new content is added, no affect to other content because RBA engine judges the display contents based on defined rule.

-> Saving effort
Rule Base Arbitration

Conventional: State machine

- Difficult to add new content
- Difficult to understand intension or background of specification
- Difficult to define exceptional transition (such transition is described as remark)

Rule based

Contents def.
- telephone
- ETC
- TbT
- ...

Proposal service

Navigation
- Audio
- Vehicle info
- ...

Area def.

Multimedia Area

Proposal Area

Normal Area

Basic Rule

• Higher priority wins between areas
• Later wins inside the area

Exceptional rules

• TbT notification is not displayed while navigation is displayed
• Low prio. contents is not displayed while telephone is displayed

• Easily add new contents
• Simple description
• Easy to understand background or reason of specification
• Behavior it not instituted.
Rule Base Arbitration - What can be defined as a rule -

• **Basic Rules**
 - Area definition (arbitration order, Z-order)
 - Arbitration policy
 - Content
 -> Priority, behavior of arbitration result (cancel, waiting)
 - Models for state transition (TAB screen transition in meter)

• **Exceptional Rules**
 - Constraint formula
 (Logical formula using status of area or contents)
 Logical operators: AND, OR, Implication, Compare, ∀, ∃ and so on.
 - Exception behavior when losing in arbitration
 e.g. Cancel only when losing to specific content (usually waiting).

• **And more**
 - Arbitration of operation rights
 - Animation definition when transition
Rule Base Arbitration - Sample of basic rule def. -

Contents

ViewContent TEL {
 loserType: GOOD_LOSER
 allocatable: [MM_AREA]
 State OUTGOING {
 priority: STANDARD_VALUE
 }
 State INCOMING {
 priority: STANDARD_VALUE
 }
 State LIST {
 priority: STANDARD_VALUE
 }
 sizeReference: Centralsize
}

ViewContent ETC {
 loserType: GOOD_LOSER
 allocatable: [MM_AREA]
 State NORMAL {
 priority: STANDARD_VALUE
 }
 sizeReference: Centralsize
}

ViewContent VR {
 loserType: GOOD_LOSER
 allocatable: [MM_AREA]
 State NORMAL {
 priority: STANDARD_VALUE
 }
 sizeReference: Centralsize
}

......

Package Displays {
 Display ICDISP {
 description: "IC"
 sizeReference: DisplaySize
 CompositeArea ICDISP_Root {
 layout: FixedPositionLayout {
 PositionContainer {
 x: 0
 y: 0
 basePoint: LEFT_TOP
 areaReference: BGarea
 }
 PositionContainer {
 x: 240
 y: 210
 basePoint: LEFT_TOP
 areaReference: MM_AREA
 }
 }
 }
 }

Area

Area MM_AREA {
 description: "MM_INTR"
 arbitrationPolicy: LAST_COME_FIRST
 sizeReference: Centralsize
 visibility: > That-of Services・OprAdvisory
 zorder: > That-of Services・OprAdvisory
}

Area VEHICLE_INTR {
 arbitrationPolicy: PRIORITY_LAST_COME_FIRST
 sizeReference: Centralsize
 visibility: > That-of MM_AREA
 zorder: > That-of MM_AREA
}

Syntax spec is being documented.
Rule Base Arbitration - Sample of Exception rule def.

Screen transition spec

MM·Switch operation area (MM_AREA)

Switch operation

No

Yes

Multimedia interrupt

High prio Gr.

Low prio Gr.

Prio based

Incoming

Incomming Disp

TEL list

Order based

Outgoing

VR

TbT

Audio

Switch operation

Dimmer

HUD adjust

Conditions:
- Multimedia and Switch operation displayed on the same area
- Switch operation contents displayed by Switch operation
- Contents group with low and High prio defined in Multimedia interrupt area
- Contents group with low prio: New contents overwrites previous ones.
- Contents group with high prio: High prio contents overwrites low prio ones.

//MM_AREA: New contents basically overwrites old ones. But only Switch operation contents can be displayed during TEL contents displayed.

Constraint TEL with prio in MM_AREA {
 runtime: true
 (Exists MM_INTR_prioH { x | x.isActive() } AND For-All SW_INTR { x | !x.isActive() })
 -> For-All MM_INTR_prioL { x | !x.isVisible() }
}
Software structure – overview – 1/2

• Option.1

This is just example. Need to consider how to connect / combine with existing compositor / wireplumeber.

RBA spec model makes it possible to update result of arbitration, layout control and sound routing.

OE specific RBA spec model
Software structure – overview – 2/2

● Option.2

This is just example. Need to consider how to connect/combine with existing compositor/wireplumeber.
Software structure - Rule-based arbitrator structure -

Basic func.
- Decide which contents shows at which area
- Arbitrate contents according to request from apps and scene (like power on/off, auto driving, ..)
- Notify arbitration result to apps
- The result contains difference from last result
- Synchronized multiple notifications bring no screen flickering

Arbitration manager:
- Receive contents request and scene info.
- Arbitrate contents and notify the result to apps.
- Notify start/end of arbitration to synchronize with Window manager.

Arbitration FW:
Arbitrate contents according to rule def.

IArbitrator Interface:
- Receive contents / scene request.
- Manage registered apps

IArbitrationResultListener Interface:
- Receive arbitration result

IArbitrationControlListener Interface:
- Receive start/end of arbitration
Schedule

<table>
<thead>
<tr>
<th>Jul</th>
<th>Aug</th>
<th>Sep</th>
<th>Nov</th>
<th>Dec</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGL Event</td>
<td>▲ SAT Meeting</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Denso activity
- Preparation for upstreaming
- Upstreaming to “staging”
- Review by AGL and fixing by DN
- Consideration how to merge main within IVI-PR

Currently, Upstream to AGL is in progress. -> https://github.com/NaohiroNISHIGUCHI/rba

Need to translate the Japanese comments in the code and header files.